top of page
lauboodibulgaspnow

Idhu Kathirvelan Kadhal Movie Free Download REPACK 11







Idhu Kathirvelan Kadhal Movie Free Download 11 Parthiban music song, download anbe Anbe song, idhu Kathirvelan Kadhal mp3 songsQ: Solving a system of equations using RowReduce? I'd like to determine the value of $\alpha$ that minimizes $g(x, y, \alpha) = -x^3 + 2x^2y - 3xy^2 + y^3$. Wolfram alpha is unable to solve this equation but I know that the equations simplify to $x = 3y$ and $y = \frac{1}{3}x$ so I tried to use a combination of RowReduce and Solve. My code is as follows: RowReduce[{x - y - 3*y - 3*x + y - x == 0, x - 3*y + x - 3*y - x + y == 0}, {x, y}, Integers] I know this is a valid argument since it solves RowReduce[{x + y + 3*y - 3*x + y - x - y + y - x == 0, x + 3*y - x + y - x - y + y - x + y == 0}, {x, y}, Integers] However, the command returns $\alpha$ as being a complex number and not an integer. Any suggestions? Thanks! A: How about RowReduce[{x - y - 3*y - 3*x + y - x - y + y - x == 0, x - 3*y + x - 3*y - x + y == 0}, {x, y}, Integers] /. ComplexInfinity -> 0 $\left( \begin{array}{cc} -1 & -3 \\ -1 & -1 \\ \end{array} \right)$ A: A second attempt (and using the command-line solver) eqn2 = {x - y - 3*y - 3*x + y - x - y + y - x == 0, x - 3*y + x - 3*y - x + y == 0}; s = Solve[eqn2, x] // ToRules // Evaluate (* {{y -> - 648931e174


Related links:

17 views0 comments

Comments


bottom of page